Posts Tagged ‘probability’

More Refactoring

Wednesday, 4 September 2024

The axiom of Generalized Decomposition from Formal Qualitative Probability may be refactored to [image of mathematic formula] This refactoring is mathematically trivial, exploiting two automorphisms, but exhibits the principle more elegantly.

Refactoring

Friday, 23 August 2024

The axiom of Disjunctive Presumption in Formal Qualitative Probability [image of mathematic formula] may be more simply stated as [image of mathematic formula]

Two More Transoms, and a Note Tost over Another

Thursday, 14 March 2024

The journal to which, on 21 February, I submitted my paper on Sraffa rejected it with the familiar suggestion that I submit it to a journal on the history of thought. An administrator at the next journal to which I submitted it — with a cover letter that, amongst other things, explained why the article did not belong in a journal of history of thought — asked that I shorten it by about 25%, and insisted that my cover letter, which had been written specifically for that journal, needed to be explicitly addressed to the editors. I deleted the submission altogether.

On 24 February, I submitted to another journal, again with a cover letter explaining why the article did not belong in a journal of history of thought. Although the submission form did not require that I specify an institutional affiliation, an administrator contacted me requiring that I provide one. I entered [NONE]; evidently that response was sufficient. For something like ten or eleven days though, the reported status of the paper was that it were undergoing an initial check. Then, for a few days, the reported status was Pending Editor Assignment. When I checked this morning, the status was Under Review.

I'd say that the greatest danger to the paper is that it will be regarded as too long for the journal in question. If their declared ceiling is firm, then indeed the paper is too long; but I know of at least one academic journal that baldly states a ceiling, only later to provide an opportunity to appeal on behalf of a paper that exceeds that ceiling.

The next journal in my queue explicitly does not set a maximum length for papers.

By the way, the journal from which I yanked my paper on 21 February still has the thing listed in their submission system, with seemingly frozen status.


Some time ago, I had the idea for a very short academic paper — called a note — on a potential pitfall in translating from generalized probability to modal logic. After I banged-out a draft of the note, I asked one friend if he thought the point too trivial to bother seeking publication; when he got back to me on Tuesday, he said that he didn't think the point too trivial. Another friend had suggested that I let the editors and referees decide that question. Meanwhile, I had thought that I ought to restructure the presentation a bit. I effected a restructuring early this morning, before going to sleep, and then submitted the note in the after-noon.

On Arguments from Authority

Saturday, 29 April 2023

Most people who claim that argument from authority is fallacious would, perversely, argue for that claim by reference to the authority of common knowledge or of what were often taught. A fallacy is actually shown by demonstrating a conflict with a principle of logic or by an empirical counter-example. A case in which an authority proved to be wrong might be taken as the latter, but matters are not so simple.

When one normally makes a formal study of logic, that study is usually of assertoric logic, the logic in which every proposition is treated as if knowable to be true or knowable to be false, even if sometimes the study itself deliberately treats a propostion as false that is true or a proposition as true that is false. In the context of assertoric logic, an argument from authority is indeed fallacious.

But most of the propositions with which we deal are not known or knowable to be true or false; rather, we find that some propositions are relatively more plausible than others. Our everyday logic must be the logic of that ordering. Within that logic, showing that a proposition has one position in the ordering given some information does not show that it did not have a different position without that information. So we cannot show that arguments from authority are fallacious in the logic of plausibility simply by showing that what some particular authority claimed to be likely or even certainly true was later shown to be almost certainly false or simply false.

Arguments from authority, though often not recognized as such, are essential to our everyday reasoning. For example, most of us rely heavily upon the authority of others as to what they have experienced; we even rely heavily upon the authority of n-th-hand reports and distillations of reports of the experiences of others. And none of us has fully explored the theoretic structure of the scientific theories that the vast majority of us accept; instead, we rely upon the authority of those transmitting sketches, gists, or conclusions. Some of those authorities have failed us; some of those authorities will fail us in the future; those failures have not and will not make every such reliance upon authorities fallacious.

However, genuine fallacy would lie in over-reliance upon authorities — putting some authoritative claims higher in the plausibility ordering than any authoritative claims should be, or failing to account for factors that should lower the places in the plausibity ordering associated with authorities of various sorts, such as those with poor histories or with conflicts of interest.

By the way, I have occasionally been accused of arguing from authority when I've done no such thing, but instead have pointed to someone who was in some way important in development or useful in presentation of an argument that I wish to invoke.

Missed Article

Saturday, 21 November 2020

I found an article that, had I known of it, I would have noted in my probability paper, A Logic of Comparative Support: Qualitative Conditional Probability Relations Represented by Popper Functions by James Allen Hawthorne
in Oxford Handbook of Probabilities and Philosophy, edited by Alan Hájek and Chris Hitchcock

Professor Hawthorne adopts essentially unchanged most of Koopman's axiomata from The Axioms and Algebra of Intuitive Probability, but sets aside Koopman's axiom of Subdivision, noting that it may not seem as intuitively compelling as the others. In my own paper, I showed that Koopman's axiom of Subdivision was a theorem of a much simpler, more general principle in combination with an axiom that is equivalent to two of the axiomata in Koopman's later revision of his system. (The article containing that revision is not listed in Hawthorne's bibliography.) I provided less radically simpler alternatives to other axiomata, and included axiomata that did not apply to Koopman's purposes in his paper but did to the purposes of a general theory of decision-making.

Libertine Bayesianism

Thursday, 24 September 2020

As repeatedly noted by me and by many others, there are multiple theories about the fundamental notion of probability, including (though not restricted to) the notion of probabilities as objective, logical relationships amongst propositions and that of probabilities as degrees of belief.

Though those two notions are distinct, subscribers to each typically agree with subscribers to the other upon a great deal of the axiomatic structure of the logic of probability. Further, in practice the main-stream of the first group and that of the second group both arrive at their estimates of measures of probability by adjusting initial values through repeated application, as observations accumulate, of a principle known as Bayes' theorem. Indeed, the main-stream of one group are called objective Bayesian and the mainstream of the other are often called subjective Bayesian.[1] Where the two main-streams differ in practice is in the source of those initial values.

The objective Bayesians believe that, in the absence of information, one begins with what are called non-informative priors. This notion is evolved from the classical idea of a principle of insufficient reason, which said that one should assign equal probabilities to events or to propositions, in the absence of a reason for assigning different probabilities. (For example, begin by assume that a die is fair.) The objective Bayesians attempt to be more shrewd than the classical theorists, but will often admit that in some cases non-informative priors cannot be found because of a lack of understanding of how to divide the possibilities (in some cases because of complexity).

The subjective Bayesians believe that one may use as a prior whatever initial degree of belief one has, measured on an interval from 0 through 1. As measures of probability are taken to be degrees of belief, any application of Bayes' theorem that results in a new value is supposed to result in a new degree of belief.

I want to suggest what I think to be a new school of thought, with a Bayesian sub-school, not-withstanding that I have no intention of joining this school.

If a set of things is completely ranked, it's possible to proxy that ranking with a quantification, such that if one thing has a higher rank than another then it is assigned a greater quantification, and that if two things have the same rank then they are assigned the same quantification. If all that we have is a ranking, with no further stipulations, then there will be infinitely many possible quantifications that will work as proxies. Often, we may want to tighten-up the rules of quantification (for example, by requiring that all quantities be in the interval from 0 through 1), and yet still it may be the case that infinitely many quantifications would work equally well as proxies.

Sets of measures of probability may be considered as proxies for underlying rankings of propositions or of events by probability. The principles to which most theorists agree when they consider probability rankings as such constrain the sets of possible measures, but so long as only a finite set of propositions or of events is under consideration, there are infinitely many sets of measures that will work as proxies.

A subjectivist feels free to use his or her degrees of belief so long as they fit the constraints, even though someone else may have a different set of degrees of belief that also fit the constraints. However, the argument for the admissibility of the subjectivist's own set of degrees of belief is not that it is believed; the argument is that one's own set of degrees of belief fits the constraints. Belief as such is irrelevant. It might be that one's own belief is colored by private information, but then the argument is not that one believes the private information, but that the information as such is relevant (as indeed it might be); and there would always be some other sets of measures that also conformed to the private information.

Perhaps one might as well use one's own set of degrees of belief, but one also might every bit as well use any conforming set of measures.

So what I now suggest is what I call a libertine school, which regards measures of probability as proxies for probability rankings and which accepts any set of measures that conform to what is known of the probability ranking of propositions or of events, regardless of whether these measures are thought to be the degrees of belief of anyone, and without any concern that these should become the degrees of belief of anyone; and in particular I suggest libertine Bayesianism, which accepts the analytic principles common to the objective Bayesians and to the subjective Bayesians, but which will allow any set of priors that conforms to those principles.


[1] So great a share of subjectivists subscribe to a Bayesian principle of updating that often the subjective Bayesians are simply called subjectivists as if there were no need to distinguish amongst subjectivists. And, until relatively recently, so little recognition was given to the objective Bayesians that Bayesian was often taken as synonymous with subjectivist.

Again into the Breach

Monday, 15 January 2018

As occasionally noted in publicly accessible entries to this 'blog, I have been working on a paper on qualitative probability. A day or so before Christmas, I had a draft that I was willing to promote beyond a circle of friends.

I sent links to a few researchers, some of them quite prominent in the field. One of them responded very quickly in a way that I found very encouraging; and his remarks motivated me to make some improvements in the verbal exposition.

I hoped and still hope to receive responses from others, but as of to-day have not. I'd set to-day as my dead-line to begin the process of submitting the paper to academic journals, and therefore have done so.

The process of submission is emotionally difficult for many authors, and my past experiences have been especially bad, including having a journal fail to reach a decision for more than a year-and-a-half, so that I ultimate withdrew the paper from their consideration. I even abandoned one short paper because the psychological cost of trying to get it accepted in some journal was significantly impeding my development of other work. While there is some possibility that finding acceptance for this latest paper will be less painful, I am likely to be in for a very trying time.

It is to be hoped that, none-the-less, I will be able to make some progress on the next paper in the programme of which my paper on indecision and now this paper on probability are the first two installments. In the presumably forth-coming paper, I will integrate incomplete preferences with incompletely ordered probabilities to arrive at a theory of rational decision-making more generalized and more reälistic than that of expected-utility maximization. A fourth and fifth installment are to follow that.

But the probability paper may be the most important thing that I will ever have written.

Theories of Probability — Perfectly Fair and Perfectly Awful

Tuesday, 11 April 2017

I've not heard nor read anyone remarking about a particular contrast between the classical approach to probability theory and the Bayesian subjectivist approach. The classical approach began with a presumption that the formal mathematical principles of probability could be discovered by considering situations that were impossibly good; the Bayesian subjectivist approach was founded on a presumption that those principles could be discovered by considered situations that were implausibly bad.


The classical development of probability theory began in 1654, when Fermat and Pascal took-up a problem of gambling on dice. At that time, the word probability and its cognates from the Latin probabilitas meant plausibility.

Fermat and Pascal developed a theory of the relative plausibility of various sequences of dice-throws. They worked from significant presumptions, including that the dice had a perfect symmetry (except in-so-far as one side could be distinguished from another), so that, with any given throw, it were no more plausible that one face should be upper-most than that any other face should be upper-most. A model of this sort could be be reworked for various other devices. Coins, wheels, and cards could be imagined as perfectly symmetrical. More generally, very similar outcomes could be imagined as each no more probable than any other. If one presumes that to be no more probable is to be equally probable, then a natural quantification arises.

Now, the preceptors did understand that most or all of the things that they were treating as perfectly symmetrical were no such thing. Even the most sincere efforts wouldn't produce a perfectly balanced die, coin, or roulette wheel, and so forth. But these theorists were very sure that consideration of these idealized cases had revealed the proper mathematics for use across all cases. Some were so sure of that mathematics that they inferred that it must be possible to describe the world in terms of cases that were somehow equally likely, without prior investigation positively revealing them as such. (The problem for this theory was that different descriptions divide the world into different cases; it would take some sort of investigation to reveal which of these descriptions, if any, results in division into cases of equal likelihood. Indeed, even with the notion of perfectly balanced dice, one is implicitly calling upon experience to understand what it means for a die to be more or less balanced; likewise for other devices.)


As subjectivists have it, to say that one thing is more probable than another is to say that that first thing is more believed than is the other. (GLS Shackle proposed that the probability of something might be measured by how surprised one would be if that something were discovered not to be true.)

But most subjectivists insist that there are rationality constraints that must be followed in forming these beliefs, so that for example if X is more probable than Y and Y more probable than Z, then X must be more probable than Z. And the Bayesian subjectivists make a particular demand for what they call coherence. These subjectivists imagine that one assigns quantifications of belief to outcomes; the quantifications are coherent if they could be used as gambling ratios without an opponent finding some combination of gambles with those ratios that would guarantee that one suffered a net loss. Such a combination is known as a Dutch book.

But, while quantifications can in theory be chosen that insulate one against the possibility of a Dutch book, it would only be under extraordinary circumstances that one could not avoid a Dutch book by some other means, such as simply rejecting complex contracts to gamble, and instead deciding on gambles one-at-a-time, without losing sight of the gambles to which one had already agreed. In the absence of complex contracts or something like them, it is not clear that one would need a preëstablished set of quantifications or even could justify committing to such a set. (It is also not clear why, if one's beliefs correspond to measures, one may not use different measures for gambling ratios.) Indeed, it is only under rather unusual circumstances that one is confronted by opponents who would attempt to get one to agree to a Dutch book. (I don't believe that anyone has ever tried to present me with such a combination, except hypothetically.) None-the-less, these theorists have been very sure that consideration of antagonistic cases of this class has revealed the proper mathematics for use across all cases.


The impossible goodness imagined by the classical theorists was of a different aspect than is the implausible badness of the Bayesian subjectivists. A fair coin is not a friendly coin. Still, one framework is that of the Ivory Tower, and the other is that of Murphy's Law.

Generalizing the Principle of Additivity

Friday, 17 February 2017

One of the principles often suggested as an axiom of probability is that of additivity. The additivity here is a generalization of arithmetic addivity — which generalization, with other assumptions, will imply the arithmetic case.

The classic formulation of this principle came from Bruno di Finetti. Di Finetti was a subjectivist. A typical subjectivist is amongst those who prefer to think in terms of the probability of events, rather than in terms of the probability of propositions. And subjectivists like to found their theory of probability in terms of unconditional probabilities. Using somewhat different notation from that here, the classic formulation of the principle of additivity is in which X, Y, and Z are sets of events. The underscored arrowhead is again my notation for weak supraprobability, the union of strict supraprobability with equiprobability.

One of the things that I noticed when considering this proposition is that the condition that YZ be empty is superfluous. I tried to get a note published on that issue, but journals were not receptive. I had bigger fish to fry other than that one, so I threw-up my hands and moved onward.

When it comes to probability, I'm a logicist. I see probability as primarily about relations amongst propositions (though every event corresponds to a proposition that the event happen and every proposition corresponds to the event that the proposition is true), and I see each thing about which we state a probability as a compound proposition of the form X given c in which X and c are themselves propositions (though if c is a tautology, then the proposition operationalizes as unconditional). I've long pondered what would be a proper generalized restatement of the principle of additivity. If you've looked at the set of axiomata on which I've been working, then you've seen one or more of my efforts. Last night, I clearly saw what I think to be the proper statement: To get di Finetti's principle from it, set c2 = c1 and make it a tautology, and set X2 = Z = Y2. Note that the condition of (X2 | c1) being weakly supraprobable to (Y2 | c2) is automatically met when the two are the same thing. By itself, this generalization implies my previous generalization and part of another principle that I was treating as an axiom; the remainder of that other principle can be got by applying basic properties of equiprobability and the principle that strict supraprobability and equiprobability are mutually exclusive to this generalization. The principle that is thus demoted was awkward; the axiom that was recast as acceptable as it was, but the new version is elegant.

Deal-Breakers

Saturday, 7 January 2017

Elsewhere, Pierre Lemieux asked In two sentences, what do you think of the Monty Hall paradox? Unless I construct sentences loaded with conjunctions (which would seem to violate the spirit of the request), an answer in just two sentences will be unsatisfactory (though I provided one). Here in my 'blog, I'll write at greater length.


The first appearance in print of what's called the Monty Hall Problem seems to have been in a letter by Steve Selvin to The American Statistician v29 (1975) #1. The problem resembles those with which Monty Hall used to present contestants on Let's Make a Deal, though Hall has asserted that no problem quite like it were presented on that show. The most popular statement of the Monty Hall Problem came in a letter by Craig Whitaker to the Ask Marilyn column of Parade:

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, Do you want to pick door No. 2? Is it to your advantage to switch your choice?

(Before we continue, take car and goat to stand, respectively, for something that you want and something that you don't want, regardless of your actual feelings about cars and about goats.)

There has been considerable controversy about the proper answer, but the text-book answer is that, indeed, one should switch choices. The argument is that, initially, one has a 1/3 probability that the chosen Door has the car, and a 2/3 probability that the car is behind one of the other two Doors. When the host opens one of the other two Doors, the probability remains that the car is behind one of the unchosen Doors, but has gone to 0 for the opened Door, which is to say that the probability is now 2/3 that the car is behind the unchosen, unopened Door.


My first issue with the text-book answer is with its assignment of initial, quantified probabilities. I cannot even see a basis for qualitative probabilities here; which is to say that I don't see a proper reason for thinking either that the probability of the car being behind a given Door is equal to that for any other Door or that the probability of the car being behind some one Door is greater than that of any other Door. As far as I'm concerned, there is no ordering at all.

The belief that there must be an ordering usually follows upon the even bolder presumption that there must be a quantification. Because quantification has proven to be extremely successful in a great many applications, some people make the inference that it can be successfully applied to any and every question. Others, a bit less rash, take the position that it can be applied everywhere except where it is clearly shown not to be applicable. But even the less rash dogma violates Ockham's razor. Some believe that they have a direct apprehension of such quantification. However, for most of human history, if people thought that they had such literal intuitions then they were silent about it; a quantified notion of probability did not begin to take hold until the second half of the Seventeenth Century. And appeals to the authority of one's intuition should carry little if any weight.

Various thinkers have adopted what is sometimes called the principle of indifference or the principle of insufficient reason to argue that, in the absence of any evidence to the contrary, each of n collectively exhaustive and mutually exclusive possibilities must be assigned equal likelihood. But our division of possibilities into n cases, rather than some other number of cases, is an artefact of taxonomy. Perhaps one or more of the Doors is red and the remainder blue; our first division could then be between two possibilities, so that (under the principle of indifference) one Door would have an initial probability of 1/2 and each of the other two would have a probability of 1/4.

Other persons will propose that we have watched the game played many times, and observed that a car has with very nearly equal frequency appeared behind each of the three Doors. But, while that information might be helpful were we to play many times, I'm not aware of any real justification for treating frequencies as decision-theoretic weights in application to isolated events. You won't be on Monty's show to-morrow.

Indeed, if a guest player truly thought that the Doors initially represented equal expectations, then that player would be unable to choose amongst them, or even to delegate the choice (as the delegation has an expectation equal to that of each Door); indifference is a strange, limiting case. However, indecision — the aforementioned lack of ordering — allows the guest player to delegate the decision. So, either the Door was picked for the guest player (rather than by the guest player), or the guest player associated the chosen Door with a greater probability than either unchosen Door. That point might seem a mere quibble, but declaring that the guest player picked the Door is part of a rhetorical structure that surreptitiously and fallaciously commits the guest player to a positive judgment of prior probability. If there is no case for such commitment, then the paradox collapses.


Well, okay now, let's just beg the question, and say not only that you were assigned Door Number 1, but that for some mysterious reason you know that there is an equal probability of the car being behind each of the Doors. The host then opens Door Number 3, and there's a goat. The problem as stated does not explain why the host opened Door Number 3. The classical statement of the problem does not tell the reader what rule is being used by the host; the presentation tells us that the host knows what's behind the doors, but says nothing about whether or how he uses that knowledge. Hypothetically, he might always open a Door with a goat, or he might use some other rule, so that there were a possibility that he would open the Door with a car, leaving the guest player to select between two concealed goats.

Nowhere in the statement of the problem are we told that you are the sole guest player. Something seems to go very wrong with the text-book answer if you are not. Imagine that there are many guest players, and that outcomes are duplicated in cases in which more than one guest player selects or is otherwise assigned the same Door. The host opens Door Number 3, and each of the guest players who were assigned that Door trudges away with a goat. As with the scenario in which only one guest player is imagined, more than one rule may govern this choice made by the host. Now, each guest player who was assigned Door Number 1 is permitted to change his or her assignment to Door Number 2, and each guest player who was assigned Door Number 2 is allowed to change his or her assignment to Door Number 1. (Some of you might recall that I proposed a scenario essentially of this sort in a 'blog entry for 1 April 2009.) Their situations appear to be symmetric, such that if one set of guest players should switch then so should the other; yet if one Door is the better choice for one group then it seems that it ought also to be the better for the other group.

The resolution is in understanding that the text-book solution silently assumed that the host were following a particular rule of selection, and that this rule were known to the guest player, whose up-dating of probabilities thus could be informed by that knowledge. But, in order for the text-book solution to be correct, all players must be targeted in the same manner by the response of the host. When there is only one guest player, it is possible for the host to observe rules that respond to all guest players in ways that are not not possible when there are multiple guest players, unless they are somehow all assigned the same Door. It isn't even possible to do this for two sets of players each assigned different Doors.


Given the typical presentation of the problem, the typical statement of ostensible solution is wrong; it doesn't solve the problem that was given, and doesn't identify the problem that was actually solved.


[No goats were harmed in the writing of this entry.]